Pfizer COVID-19 vaccine appointments are available to our patients. Sign up for Connect today to schedule your vaccination.

Ixabepilone-induced mitochondria and sensory axon loss in breast cancer patients.

TitleIxabepilone-induced mitochondria and sensory axon loss in breast cancer patients.
Publication TypeJournal Article
Year of Publication2014
AuthorsEbenezer GJ, Carlson K, Donovan D, Cobham M, Chuang E, Moore A, Cigler T, Ward M, Lane ME, Ramnarain A, Vahdat LT, Polydefkis M
JournalAnn Clin Transl Neurol
Volume1
Issue9
Pagination639-49
Date Published2014 Sep
Abstract

BACKGROUND: We sought to define the clinical and ultrastructure effects of ixabepilone (Ix), a microtubule-stabilizing chemotherapy agent on cutaneous sensory nerves and to investigate a potential mitochondrial toxicity mechanism.

METHODS: Ten breast cancer patients receiving Ix underwent total neuropathy score clinical (TNSc) assessment, distal leg skin biopsies at cycle (Cy) 3 (80-90 mg/m(2)), Cy5 (160-190 mg/m(2)), and Cy7 (>200 mg/m(2)) and were compared to 5 controls. Skin blocks were processed for EM and ultrastructural morphometry of Remak axons done.

RESULTS: At baseline, Ix-treated subjects had higher TNSc values (4.5 ± 0.8 vs. 0.0 ± 0.0), greater percentage of empty (denervated) Schwann cells (29% vs. 12%), altered axonal diameter (422.9 ± 17 vs. 354.9 ± 14.8 nm, P = 0.01), and axon profiles without mitochondria tended to increase compared to control subjects (71% vs. 70%). With increasing cumulative Ix exposure, an increase in TNSc values (Cy3: 5.4 ± 1.2, Cy7: 10 ± 4, P < 0.001), empty Schwann cells (39% by Cy7), and dilated axons (in nm, Cy3: 506.3 ± 22.1, Cy5: 534.8 ± 33, Cy7: 527.8 ± 24.4; P < 0.001) was observed. In addition, axon profiles without mitochondria (Cy3:74%, Cy7:78%) and mitochondria with abnormal morphology (grade 3 or 4) increased from 24% to 79%. Schwann cells with atypical mitochondria and perineuronal macrophage infiltration in dermis were noted.

INTERPRETATION: This study provides functional and structural evidence that Ix exposure induces a dose-dependent toxicity on small sensory fibers with an increase in TNSc scores and progressive axonal loss. Mitochondria appear to bear the cumulative toxic effect and chemotherapy-induced toxicity can be monitored through serial skin biopsy-based analysis.

DOI10.1002/acn3.90
Alternate JournalAnn Clin Transl Neurol
PubMed ID25493278
PubMed Central IDPMC4241791

Researcher's Toolbox

Contact Information

Joint Clinical Trials Office Weill Cornell Medicine /
NewYork-Presbyterian
1300 York Avenue,
Box 305
New York, NY 10065 Phone: (646) 962-8215 Fax: (646) 962-0536

Abbreviation Library